New just-infinite pro-p groups of finite width and subgroups of the Nottingham group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

The nc-supplemented subgroups of finite groups

A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

Subgroups of finite index and the just infinite property

A residually finite (profinite) group G is just infinite if every non-trivial (closed) normal subgroup of G is of finite index. This paper considers the problem of determining whether a (closed) subgroup H of a just infinite group is itself just infinite. If G is not virtually abelian, we give a description of the just infinite property for normal subgroups in terms of maximal subgroups. In par...

متن کامل

Omega subgroups of pro - p groups ∗

Let G be a pro-p group and let k ≥ 1. If γk(p−1)(G) ≤ γr(G) s for some r and s such that k(p − 1) < r + s(p − 1), we prove that the exponent of Ωi(G) is at most pi+k−1 for all i.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.08.012